
learn you a haskell
in 20 minutes

Hello!

Who am I?
­ Student at UGent
­ Geek
­ I like to make things
@jaspervdj
jaspervdj.be
github.com/jaspervdj

What the hell is Haskell?
­ Programming language
­ Functional
­ Based on λ­calculus

On to serious stuff!

I have this game on my phone...

... which leads to frustrations

... until you solve it ...

Yay!
Only about a thousand more
puzzles to solve!

Yay!
Only about a thousand more
puzzles to solve!
facepalm

-- Let' s represent tiles as simple points. . .

data Tile = Tile { tileX : : Int

, tileY : : Int

} deriving (Eq, Ord, Show)

Simple data types

-- Let' s represent tiles as simple points. . .

data Tile = Tile { tileX : : Int

, tileY : : Int

} deriving (Eq, Ord, Show)

-- A piece is basically a list of tiles.

type Piece = [Tile]

Alias types

-- Let' s represent tiles as simple points. . .

data Tile = Tile { tileX : : Int

, tileY : : Int

} deriving (Eq, Ord, Show)

-- A piece is basically a list of tiles.

type Piece = [Tile]

-- A board is basically a large piece.

type Board = Piece

Alias types

-- Let' s represent tiles as simple points. . .

data Tile = Tile { tileX : : Int

, tileY : : Int

} deriving (Eq, Ord, Show)

-- A piece is basically a list of tiles.

type Piece = [Tile]

-- A board is basically a large piece.

type Board = Piece

-- A solution is a list of pieces.

type Solution = [Piece]

Alias types

-- Determine the width of a piece.

width : : Piece -> Int

Simple functions

-- Determine the width of a piece.

width : : Piece -> Int

width piece = maximum xs

Simple functions

-- Determine the width of a piece.

width : : Piece -> Int

width piece = maximum xs

where xs = map tileX piece

Simple functions

-- Determine the width of a piece.

width : : Piece -> Int

width piece = maximum xs

where xs = map tileX piece

-- Determine the height of a piece.

height : : Piece -> Int

height piece = maximum ys

where ys = map tileY piece

Simple functions

-- General dimension function.

dimension : : (Piece -> Int) -> Piece -> Int

dimension f piece = maximum xs

where xs = map f piece

-- Determine the width of a piece.

width : : Piece -> Int

width = dimension tileX

-- Determine the height of a piece.

height : : Piece -> Int

height = dimension tileY

Higher­order functions

-- Move a piece.

translate : : Piece -> (Int, Int) -> Piece

translate piece (x, y) =

More utility functions

-- Move a piece.

translate : : Piece -> (Int, Int) -> Piece

translate piece (x, y) =

map (\(Tile tx ty) ->

Tile (tx + x) (ty + y)) piece

More utility functions

-- Move a piece.

translate : : Piece -> (Int, Int) -> Piece

translate piece (x, y) =

map (\(Tile tx ty) ->

Tile (tx + x) (ty + y)) piece

-- Produce a new board when putting a piece.

putPiece : : Board -> Piece -> Board

More utility functions

-- Move a piece.

translate : : Piece -> (Int, Int) -> Piece

translate piece (x, y) =

map (\(Tile tx ty) ->

Tile (tx + x) (ty + y)) piece

-- Produce a new board when putting a piece.

putPiece : : Board -> Piece -> Board

putPiece board piece = board \\ piece

More utility functions

-- Move a piece.

translate : : Piece -> (Int, Int) -> Piece

translate piece (x, y) =

map (\(Tile tx ty) ->

Tile (tx + x) (ty + y)) piece

-- Produce a new board when putting a piece.

putPiece : : Board -> Piece -> Board

putPiece board piece = board \\ piece

-- Check if we can put a piece on the board.

canPutPiece : : Board -> Piece -> Bool

More utility functions

-- Move a piece.

translate : : Piece -> (Int, Int) -> Piece

translate piece (x, y) =

map (\(Tile tx ty) ->

Tile (tx + x) (ty + y)) piece

-- Produce a new board when putting a piece.

putPiece : : Board -> Piece -> Board

putPiece board piece = board \\ piece

-- Check if we can put a piece on the board.

canPutPiece : : Board -> Piece -> Bool

canPutPiece board = all (` elem` board)

More utility functions

validPositions : : Board -> Piece -> [Piece]

validPositions board piece =

filter (canPutPiece board) allPositions

Validation of positions

validPositions : : Board -> Piece -> [Piece]

validPositions board piece =

filter (canPutPiece board) allPositions

where allPositions : : [Piece]

allPositions = map

(translate piece) allCoords

Validation of positions

validPositions : : Board -> Piece -> [Piece]

validPositions board piece =

filter (canPutPiece board) allPositions

where allPositions : : [Piece]

allPositions = map

(translate piece) allCoords

-- A simple list with all coords.

allCoords : : [(Int, Int)]

allCoords = [(x, y) |

x <- [0 . . (width board) - 1] ,

y <- [0 . . (height board) - 1]]

Validation of positions

solve : : Board -> [Piece] ->

[Piece] -> Maybe Solution

And finally, on to solving!

solve : : Board -> [Piece] ->

[Piece] -> Maybe Solution

solve board piecesLeft added

| null piecesLeft = Just added

And finally, on to solving!

solve : : Board -> [Piece] ->

[Piece] -> Maybe Solution

solve board piecesLeft added

| null piecesLeft = Just added

| otherwise = msum solutions

And finally, on to solving!

solve : : Board -> [Piece] ->

[Piece] -> Maybe Solution

solve board piecesLeft added

| null piecesLeft = Just added

| otherwise = msum solutions

where solutions = map solve' positions

And finally, on to solving!

solve : : Board -> [Piece] ->

[Piece] -> Maybe Solution

solve board piecesLeft added

| null piecesLeft = Just added

| otherwise = msum solutions

where solutions = map solve' positions

positions = validPositions board

(head piecesLeft)

And finally, on to solving!

solve : : Board -> [Piece] ->

[Piece] -> Maybe Solution

solve board piecesLeft added

| null piecesLeft = Just added

| otherwise = msum solutions

where solutions = map solve' positions

positions = validPositions board

(head piecesLeft)

solve' piece = solve

(putPiece board piece)

(tail piecesLeft) (piece: added)

And finally, on to solving!

Many good resources available online!
learnyouahaskell.com
book.realworldhaskell.org

Questions?
Demo?

