
Porting Text to UTF-8
Dutch Haskell User Group

Jasper Van der Jeugt

July 14, 2011

Hello!

My name is Jasper
Student at UGent
I write Haskell
GhentFPG
@jaspervdj

jaspervdj.be

Overview

Credit where credit is due

High-Performance Haskell, advice
Johan Tibell

Mentoring
Edward Kmett

Overview

Introduction
UTF-8 vs. UTF-16
Porting Text to UTF-8
Benchmarking pitfalls
GHC Core
Results

Overview

Introduction
UTF-8 vs. UTF-16
Porting Text to UTF-8
Benchmarking pitfalls
GHC Core
Results

UTF-8 vs. UTF-16

Number of unicode characters?

17 planes
Each plane: 216 characters

UTF-8 vs. UTF-16

Number of unicode characters?

17 ∗ 216 characters

UTF-8 vs. UTF-16

Number of bits needed?

log2(17 ∗ 216) = 20.087...

21 bits per character

UTF-8 vs. UTF-16

String is (often) a bad choice

data Char = C# Char#

C#: word
Char#: 32 bits

UTF-8 vs. UTF-16

String is (often) a bad choice

data [] a = [] | a : [a]

UTF-8 vs. UTF-16

UTF-8 vs. UTF-16

Two points:

1. Use strict arrays

2. Don’t use a 32-bit encoding

UTF-8 vs. UTF-16

UTF-8 vs. UTF-16

UTF-8 vs. UTF-16

Two points:

1. Some things are inherently faster
using UTF-8

2. Some things are inherently faster
using UTF-16

Overview

Introduction
UTF-8 vs. UTF-16
Porting Text to UTF-8
Benchmarking pitfalls
GHC Core
Results

Porting Text to UTF-8

encodeUt f8 : : Text −> B y t e S t r i n g

Implementation very simple

Porting Text to UTF-8

encodeUt f8 (Text a r r o f f l e n) =

u n s a f e P e r f o r m I O $ do
f p <− m a l l o c B y t e S t r i n g l e n

w i t h F o r e i g n P t r f p $ <memcpy>

return $! PS f p 0 l e n

Porting Text to UTF-8

decodeUt f8 : : B y t e S t r i n g −> Text

Very important to validate first!

Porting Text to UTF-8

decodeUtf8 =

Porting Text to UTF-8

Implementations of map, filter...

s t ream : : Text −> Stream Char
unstream : : Stream Char −> Text

Porting Text to UTF-8

data Stream a =

f o r a l l s . Stream

(s −> Step s a) −− s t e p p e r

! s −− s t a t e

! S i z e −− s i z e h i n t

Porting Text to UTF-8

data Step s a

= Done

| S k i p ! s

| Y i e l d ! a ! s

Porting Text to UTF-8

Most functions written as:

f : : Text −> Text

f = unstream . f ’ . s t ream

Porting Text to UTF-8

f = unstream . f ’ . s t ream

g = unstream . g ’ . s t ream

Stream fusion:

f . g =

unstream . f ’ . g ’ . s t ream

Porting Text to UTF-8

These are not the only streaming
combinators...

s t ream . decodeUt f8 = s t r e a m U t f 8

s t r e a m U t f 8 : :

B y t e S t r i n g −> Stream Char

Overview

Introduction
UTF-8 vs. UTF-16
Porting Text to UTF-8
Benchmarking pitfalls
GHC Core
Results

Benchmarking pitfalls

Haskell is a lazy language
This makes benchmarking hard

Benchmarking pitfalls

Two types of benchmarks:
Functions and programs

(we focus on the former)

Benchmarking pitfalls

Benchmarking some function

f : : Int −> Int

Benchmarking pitfalls

In e.g. Python

t o t a l = 0

f o r i in r a n g e (1 0 0) :

s t a r t = t ime . t ime ()

f ()

end = t ime . t ime ()

t o t a l += (end − s t a r t) / 100

Benchmarking pitfalls

In Haskell?

r e p l i c a t e M 100 $ do
s t a r t <− getTime

l e t y = f x

end <− y ‘ seq ‘ getTime

This is pretty hard to get right

Benchmarking pitfalls

Conclusion?

Never write your own
benchmarking code

Benchmarking pitfalls

Criterion

By Bryan O’Sullivan

Benchmarking pitfalls

Criterion

bench ” f ” $ n f f x

bench ”g” $ whnf g x

Benchmarking pitfalls

Eq for string types

whnf (== T . i n i t t

‘T . snoc ‘ ’\ x f f f d ’) t

whnf (== BL . i n i t b l

‘BL . snoc ‘ ’\ x f f f d ’) b l

Benchmarking pitfalls

But ByteString.Lazy
is a little faster

Text: 2.489305 us
ByteString.Lazy: 39.29312 ns

Benchmarking pitfalls

Digging into the code...

eq (Chunk a as) (Chunk b bs) =

case compare (S . length a)

(S . length b) of
. . .

EQ −> a == b && eq as bs

. . .

Benchmarking pitfalls

Digging further...

eq a@ (PS p s l) b@(PS p ’ s ’ l ’)

−− s h o r t cut on l e n g t h

| l /= l ’ = False
−− s h o r t cut f o r same s t r i n g

| p == p ’ && s == s ’ = True
| . . .

Benchmarking pitfalls

Conclusion?

Libraries can be smarter than
you think they are, make sure
you know what you are
benchmarking!

Benchmarking pitfalls

Benchmarking IO

bench ” HtmlCombinator ” $ do
putStr ” Content−Type : . . . ”

. . .

putStr ”<t a b l e>”

putStr $ toLazyText $

makeTable 20000

putStr ”</t a b l e>”

Benchmarking pitfalls

This looks suspicious

benchmark ing HtmlCombinator

c o l l e c t i n g 100 s a m p l e s (. . .)

e s t i m a t e d 30.80161 s

mean : 107.6378 ms (. . .)

100 ∗ 100ms 6= 30s

Benchmarking pitfalls
Execution times for "HtmlCombinator"

e
x
e
cu

ti
o
n
 t

im
e

0.0 s

25.0 ms

50.0 ms

75.0 ms

100 ms

125 ms

150 ms

0 20 40 60 80 100
number of samples

Benchmarking pitfalls

Where is the issue?

bench ” HtmlCombinator ” $ do
putStr ” Content−Type : . . . ”

. . .

putStr ”<t a b l e>”

putStr $ toLazyText $

makeTable 20000

putStr ”</t a b l e>”

Benchmarking pitfalls

putStr . toLazyText .

makeTable =<< rows

. . .

where
rows : : IO Int
rows = return 20000

{−# NOINLINE rows #−}

Benchmarking pitfalls

Conclusion?

GHC is pretty smart as well

Overview

Introduction
UTF-8 vs. UTF-16
Porting Text to UTF-8
Benchmarking pitfalls
GHC Core
Results

GHC Core

What is GHC Core?
Why should we care?

GHC Core

What is GHC Core?

Internal representation used by GHC
A kernel language
Optimizations are applied here

GHC Core

Why should we care?

Understanding benchmark results
Know what is going on
Impress your friends!

GHC Core

A few basic rules

GHC Core

Function pattern matching, guards,
if’s are translated to case

GHC Core

where is translated to let

GHC Core

Type annotations everywhere

GHC Core

Reading core

Clean up qualified names
Use proper variable names
Remove unnecessary type annotations

GHC Core

Demo

Overview

Introduction
UTF-8 vs. UTF-16
Porting Text to UTF-8
Benchmarking pitfalls
GHC Core
Results

Results

t e x t <− T . decodeUt f8 <$>

B . readFi le f i l e P a t h

B . putStr $ T . encodeUt f8 $

T . toUpper t e x t

Results

ASCII Russian

UTF−16
UTF−8

0
1

2
3

4

Questions?

